10,198 research outputs found

    Ultrafast Quenching of the Exchange Interaction in a Mott Insulator

    Full text link
    We investigate how fast and how effective photocarrier excitation can modify the exchange interaction JexJ_\mathrm{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of JexJ_\mathrm{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified JexJ_\mathrm{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.Comment: 8 pages, 4 figure

    Ultrafast and reversible control of the exchange interaction in Mott insulators

    Get PDF
    The strongest interaction between microscopic spins in magnetic materials is the exchange interaction JexJ_\text{ex}. Therefore, ultrafast control of JexJ_\text{ex} holds the promise to control spins on ultimately fast timescales. We demonstrate that time-periodic modulation of the electronic structure by electric fields can be used to reversibly control JexJ_\text{ex} on ultrafast timescales in extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find that JexJ_\text{ex} can be enhanced and reduced for frequencies below and above the Mott gap, respectively. Moreover, for strong driving strength, even the sign of JexJ_\text{ex} can be reversed and we show that this causes time reversal of the associated quantum spin dynamics. These results suggest wide applications, not only to control magnetism in condensed matter systems, for example, via the excitation of spin resonances, but also to assess fundamental questions concerning the reversibility of the quantum many-body dynamics in cold atom systems.Comment: 9 pages, 4 figure

    Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces

    Full text link
    Using polarized X-rays, we compare the electronic and magnetic properties of a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant magnetic scattering (XRMS), we can probe the interfaces of complicated layered structures and quantitatively model depth-dependent magnetic profiles as a function of distance from the interface. Comparisons of the average electronic and magnetic properties at the interface are made independently using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The XAS and the XMCD demonstrate that the electronic and magnetic structure of the LMO layer at the modified interface is qualitatively equivalent to the underlying LSMO film. From the temperature dependence of the XMCD, it is found that the near surface magnetization for both interfaces falls off faster than the bulk. For all temperatures in the range of 50K - 300K, the magnetic profiles for both systems always show a ferromagnetic component at the interface with a significantly suppressed magnetization that evolves to the bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however the difference is only substantial at low temperature.Comment: 4 pages, 4 figure

    Numerical residual perturbation solution applied to an earth satellite including luni-solar effects

    Get PDF
    Mathematical model and computer program for numerical solution of earth orbit differential equations of motio

    Empircial labor search models: A survey

    Get PDF
    This paper surveys the existing empirical research that uses search theory to empirically analyze labor supply questions in a structural framework, using data on individual labor market transitions and durations, wages, and individual characteristics. The starting points of the literature are the Mincerian earnings function, Heckman’s classic selection model, and dynamic optimization theory. We develop a general framework for the labor market where the search for a job involves dynamic decision making under uncertainity. It can be specialized to be in agreement with most published research using labor search models. We discuss estimation, policy evaluation with the estimated model, equilibrium model versions, and the decomposition of wage variation into factors due to heterogeneity of various model determinants as well as search frictions themselves. We summarize the main empirical conclusions.Labor search models;

    Low Temperature AC Conductivity in BSCCO (2212)

    Full text link
    We report measurements of anamolously large dissipative conductivities in BiSrCaCuO(2212) at low temperatures. We have measured the complex conductivity of BSCCO thin films at 100-600 GHz as a function of doping from the underdoped to the overdoped state. At low temperatures there exists a residual dissipative conductivity which scales with the T=0 superfluid density as the doping is varied. This residual dissipative conductivity is larger than the possible contribution from a thermal population of quasiparticles at the d-wave gap nodes.Comment: Submitted to the Proceedings of the 22nd International Low Temperature Physics Conference. To be published in Physica B (http://www.elsevier.nl/locate/physb); 2 Pages with 2 Figure

    Satellite motion for all inclinations around an oblate planet

    Get PDF
    Satellite motion for all inclinations around oblate plane

    Pure single photon generation by type-I PDC with backward-wave amplification

    Full text link
    We explore a promising method of generating pure heralded single photons. Our approach is based on parametric downconversion in a periodically-poled waveguide. However, unlike conventional downconversion sources, the photon pairs are counter-propagating: one travels with the pump beam in the forward direction while the other is backpropagating towards the laser source. Our calculations reveal that these downconverted two-photon states carry minimal spectral correlations within each photon-pair. This approach offers the possibility to employ a new range of downconversion processes and materials like PPLN (previously considered unsuitable due to their unfavorable phasematching properties) to herald pure single photons over a broad frequency range.Comment: 8 pages, 3 figures, minor text changes and reformattin
    • …
    corecore